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Theory

In this work, we design Opportunistic Collaborative Learning
(OppCL), which allows resource constrained mobile devices to leverage
locally available data, communication, and computation resources to
train a machine learning model on device with no support of a
centralized third party for training or even coordination.
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The OppCL framework allows devices to (1) discover neighbors
opportunistically, including discovering the potential benefits of
collaborating on a learning task; (2) share elements of the learning
process across an encounter; (3) update a model in response to the
collaboration results.

The Opportunistic Momentum algorithm is one example instantiation
of the OppCL approach. Devices learn from their encountered
neighbors’ locally stored data while also remaining resilient to overfitting
to common data.
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Controlled evaluations with OppCL and Opportunistic Momentum demonstrate
that they are responsive to learning opportunities presented by encounters and
resilient to both non-iid data and to fluctuations in the available data sets. Devices
can also completely personalize their needs; neighbor devices can learn
completely different models based on their needs and encounters.
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Next steps include considering heterogenous resource requirements (i.e., devices
with different computational or communication capabilities) and dynamic
application model demands (i.e., when devices’ personalized goals change over
time, the model should change with them).
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System

Large-scale evaluation of decentralized learning, in general, is complex and
difficult to support. We are building both middleware to support our approaches
on-device and a large-scale simulator that can directly execute decentralized
learning implementations on hundreds or thousands of emulated nodes while
also simulating their real-world encounter patterns.
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Reality
Ultimately, deploying OppCL and other decentralized learning models
requires them to function on real hardware with real constraints.
These concerns are commonly ignored by the theoretical work in this
space. We consider memory constraints, communication constraints,
energy costs, and operating system limitations in deploying OppCL
approaches on smartphones and loT devices.
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