& The University of Texas at Austin

GFE;

Opportunistic Collaborative Learning (OppCL): Theory, System, and Reality

rRead & Share\

Haoxiang (Steven) Yu (UT Austin), Sangsu Lee (UT Austin), Christine Julien (UT Austin)

4 N\ ([ )
Theory Reality
In this work, we design Opportunistic Collaborative Learning Controlled evaluations with OppCL and Opportunistic Momentum demonstrate Ultimately, deploying OppCL and other decentralized learning models
(OppCL), which allows resource constrained mobile devices to leverage that they are responsive to learning opportunities presented by encounters and requires them to function on real hardware with real constraints.
locally available data, communication, and computation resources to resilient to both non-iid data and to fluctuations in the available data sets. Devices These concerns are commonly ignored by the theoretical work in this
train a machine learning model on device with no support of a can also completely personalize their nee.ds; neighbor devices can learn space. We consider memory constraints, communication constraints,
centralized third party for training or even coordination. completely different models based on their needs and encounters. energy costs, and operating system limitations in deploying OppCL
oa 0035 approaches on smartphones and loT devices.
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